Convolution‐based modified Clarkson integration (CMCI) for electron cutout factor calculation

نویسندگان

  • Jina Chang
  • Mu‐Han Lin
  • Weiguo Lu
  • Mingli Chen
  • Steve Jiang
چکیده

Electron therapy is widely used to treat shallow tumors because of its characteristic sharp dose fall-off beyond a certain range. A customized cutout is typically applied to block radiation to normal tissues. Determining the final monitor unit (MU) for electron treatment requires an output factor for the cutout, which is usually generated by measurement, especially for highly irregular cutouts. However, manual measurement requires a lengthy quality assurance process with possible errors. This work presents an accurate and efficient cutout output factor prediction model, convolution-based modified Clarkson integration (CMCI), to replace patient-specific output factor measurement. Like the Clarkson method, we decompose the field into basic sectors. Unlike the Clarkson integration method, we use annular sectors for output factor estimation. This decomposition method allows calculation via convolution. A 2D distribution of fluence is generated, and the output factor at any given point can be obtained. We applied our method to 10 irregularly shaped cutouts for breast patients for 6E, 9E, and 15E beams and compared the results with measurements and the electron Monte Carlo (eMC) calculation using the Eclipse planning system. While both the CMCI and eMC methods showed good agreement with chamber measurements and film measurements in relative distributions at the nominal source to surface distance (SSD) of 100 cm, eMC generated larger errors than the CMCI method at extended SSDs, with up to -9.28% deviations from the measurement for 6E beam. At extended SSD, the mean absolute errors of our method relative to measurements were 0.92 and 1.14, while the errors of eMC were 1.42 and 1.79 for SSD 105 cm and 110 cm, respectively. These results indicate that our method is more accurate than eMC, especially for low-energy beams, and can be used for MU calculation and as a QA tool for electron therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Output calculation of electron therapy at extended SSD using an improved LBR method.

PURPOSE To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. METHODS Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, ...

متن کامل

Point Dose Measurement for Verification of Treatment Planning System using an Indigenous Heterogeneous Pelvis Phantom for Clarkson, Convolution, Superposition, and Fast Superposition Algorithms

Background: Nowadays, advanced radiotherapy equipment includes algorithms to calculate dose. The verification of the calculated doses is important to achieve accurate results. Mostly homogeneous dosimetric phantoms are available commercially which do not mimic the actual patient anatomy; therefore, an indigenous heterogeneous pelvic phantom mimicking actual human pelvic region has been used to ...

متن کامل

Effective Source-Surface Distance in Various Field Sizes and Electron Beam Energies and its Effect on Cutout Factor in a Elekta Precise Linear Accelerator

Introduction: In electron beam treatment, because of the non-point electron beam source, inverse-square law cannot be applied for dosimetry in different treatment intervals. Therefore, providing source-surface distance (SSD) charts in all clinics is of paramount importance. This study aimed to determine the effective SSD for various electron beam energies and field sizes and to...

متن کامل

Clinical Comparison of Pencil Beam Convolution and Clarkson Algorithms for Dose Calculation

Purpose: The purpose of this work is to study and quantify the differences in calculated dose computed with two algorithms available in treatment planning systems: Pencil Beam Convolution and Clarkson. Material and Methods: Four different types of treatment cases were analyzed: lung, head and neck, brain and prostate. For each case, the volume definition was based on a clinical CT-scan acquisit...

متن کامل

Evaluation of Dose Calculation Algorithms Accuracy for Eclipse, PCRT3D, and Monaco Treatment Planning Systems Using IAEA TPS commissioning tests in a Heterogeneous Phantom

Introduction: The accuracy of dose calculation algorithm (DCA) is highly considered in the radiotherapy sequences. This study aims at assessing the accuracy of five dose calculation algorithms in tissue inhomogeneity corrections, based on the International Atomic Energy Agency TEC-DOC 1583. Material and Methods: A heterogeneous phantom was sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018